21 research outputs found

    Edge Label Placement in Layered Graph Drawing

    Get PDF
    Many visual languages based on node-link diagrams use edge labels. We describe different strategies of placing edge labels in the context of the layered approach to graph drawing and investigate ways of encoding edge direction in labels. We evaluate the label placement strategies based on both common aesthetic criteria and a controlled experiment. We find that placing labels on their edge can lead to more compact diagrams. Also, placing labels with additional arrows indicating edge direction can help users navigate in large diagrams and is generally preferred by participants of our experiment, outperforming other ways of indicating edge direction

    Shared probe design and existing microarray reanalysis using PICKY

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Large genomes contain families of highly similar genes that cannot be individually identified by microarray probes. This limitation is due to thermodynamic restrictions and cannot be resolved by any computational method. Since gene annotations are updated more frequently than microarrays, another common issue facing microarray users is that existing microarrays must be routinely reanalyzed to determine probes that are still useful with respect to the updated annotations.</p> <p>Results</p> <p><smcaps>PICKY</smcaps> 2.0 can design shared probes for sets of genes that cannot be individually identified using unique probes. <smcaps>PICKY</smcaps> 2.0 uses novel algorithms to track sharable regions among genes and to strictly distinguish them from other highly similar but nontarget regions during thermodynamic comparisons. Therefore, <smcaps>PICKY</smcaps> does not sacrifice the quality of shared probes when choosing them. The latest <smcaps>PICKY</smcaps> 2.1 includes the new capability to reanalyze existing microarray probes against updated gene sets to determine probes that are still valid to use. In addition, more precise nonlinear salt effect estimates and other improvements are added, making <smcaps>PICKY</smcaps> 2.1 more versatile to microarray users.</p> <p>Conclusions</p> <p>Shared probes allow expressed gene family members to be detected; this capability is generally more desirable than not knowing anything about these genes. Shared probes also enable the design of cross-genome microarrays, which facilitate multiple species identification in environmental samples. The new nonlinear salt effect calculation significantly increases the precision of probes at a lower buffer salt concentration, and the probe reanalysis function improves existing microarray result interpretations.</p

    A Parsimony Approach to Biological Pathway Reconstruction/Inference for Genomes and Metagenomes

    Get PDF
    A common biological pathway reconstruction approach—as implemented by many automatic biological pathway services (such as the KAAS and RAST servers) and the functional annotation of metagenomic sequences—starts with the identification of protein functions or families (e.g., KO families for the KEGG database and the FIG families for the SEED database) in the query sequences, followed by a direct mapping of the identified protein families onto pathways. Given a predicted patchwork of individual biochemical steps, some metric must be applied in deciding what pathways actually exist in the genome or metagenome represented by the sequences. Commonly, and straightforwardly, a complete biological pathway can be identified in a dataset if at least one of the steps associated with the pathway is found. We report, however, that this naïve mapping approach leads to an inflated estimate of biological pathways, and thus overestimates the functional diversity of the sample from which the DNA sequences are derived. We developed a parsimony approach, called MinPath (Minimal set of Pathways), for biological pathway reconstructions using protein family predictions, which yields a more conservative, yet more faithful, estimation of the biological pathways for a query dataset. MinPath identified far fewer pathways for the genomes collected in the KEGG database—as compared to the naïve mapping approach—eliminating some obviously spurious pathway annotations. Results from applying MinPath to several metagenomes indicate that the common methods used for metagenome annotation may significantly overestimate the biological pathways encoded by microbial communities

    Optimizing topological cascade resilience based on the structure of terrorist networks

    Get PDF
    Complex socioeconomic networks such as information, finance and even terrorist networks need resilience to cascades - to prevent the failure of a single node from causing a far-reaching domino effect. We show that terrorist and guerrilla networks are uniquely cascade-resilient while maintaining high efficiency, but they become more vulnerable beyond a certain threshold. We also introduce an optimization method for constructing networks with high passive cascade resilience. The optimal networks are found to be based on cells, where each cell has a star topology. Counterintuitively, we find that there are conditions where networks should not be modified to stop cascades because doing so would come at a disproportionate loss of efficiency. Implementation of these findings can lead to more cascade-resilient networks in many diverse areas.Comment: 26 pages. v2: In review at Public Library of Science ON

    Simultaneous Optimization of Both Node and Edge Conservation in Network Alignment via WAVE

    Full text link
    Network alignment can be used to transfer functional knowledge between conserved regions of different networks. Typically, existing methods use a node cost function (NCF) to compute similarity between nodes in different networks and an alignment strategy (AS) to find high-scoring alignments with respect to the total NCF over all aligned nodes (or node conservation). But, they then evaluate quality of their alignments via some other measure that is different than the node conservation measure used to guide the alignment construction process. Typically, one measures the amount of conserved edges, but only after alignments are produced. Hence, a recent attempt aimed to directly maximize the amount of conserved edges while constructing alignments, which improved alignment accuracy. Here, we aim to directly maximize both node and edge conservation during alignment construction to further improve alignment accuracy. For this, we design a novel measure of edge conservation that (unlike existing measures that treat each conserved edge the same) weighs each conserved edge so that edges with highly NCF-similar end nodes are favored. As a result, we introduce a novel AS, Weighted Alignment VotEr (WAVE), which can optimize any measures of node and edge conservation, and which can be used with any NCF or combination of multiple NCFs. Using WAVE on top of established state-of-the-art NCFs leads to superior alignments compared to the existing methods that optimize only node conservation or only edge conservation or that treat each conserved edge the same. And while we evaluate WAVE in the computational biology domain, it is easily applicable in any domain.Comment: 12 pages, 4 figure

    Automatic Layout and Labelling of State Diagrams

    No full text
    corecore